Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C9

Direct product G=N×Q with N=C22 and Q=S3×C9
dρLabelID
S3×C2×C1872S3xC2xC18216,109

Semidirect products G=N:Q with N=C22 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C9) = C9×S4φ: S3×C9/C9S3 ⊆ Aut C22363C2^2:(S3xC9)216,89
C222(S3×C9) = S3×C3.A4φ: S3×C9/C3×S3C3 ⊆ Aut C22366C2^2:2(S3xC9)216,98
C223(S3×C9) = C9×C3⋊D4φ: S3×C9/C3×C9C2 ⊆ Aut C22362C2^2:3(S3xC9)216,58

Non-split extensions G=N.Q with N=C22 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C22.(S3×C9) = Dic3×C18central extension (φ=1)72C2^2.(S3xC9)216,56

׿
×
𝔽